21 research outputs found

    The Mechanisms and Roles of Neural Feedback Loops for Visual Processing

    Get PDF
    Feedback pathways are widely present in various sensory systems transmitting time-delayed and partly-processed information from higher to lower visual centers. Although feedback loops are abundant in visual systems, investigations focusing on the mechanisms and roles of feedback in terms of micro-circuitry and system dynamics have been largely ignored. Here, we investigate the cellular, synaptic and circuit level properties of a cholinergic isthmic neuron: Ipc) to understand the role of isthmotectal feedback loop in visual processing of red-ear turtles, Trachemys scripta elegans. Turtle isthmotectal complex contains two distinct nuclei, Ipc and Imc, which interact exclusively with the optic tectum, but are otherwise isolated from other brain areas. The cholinergic Ipc neurons receive topographic glutamatergic inputs from tectal SGP neurons and project back to upper tectal layers in a topographic manner while GABAergic Imc neurons, which also get inputs from the SGP neurons project back non-topographically to both the tectum and Ipc nucleus. We have used an isolated eye-attached whole-brain preparation for our investigations of turtle isthmotectal feedback loop. We have investigated the cellular properties of the Ipc neurons by whole-cell blind-patch recordings and found that all Ipc neurons exhibit tonic firing responses to somatic current injections that are well-modeled by a leaky integrate-and-fire neuron with spike rate adaptation. Further investigations reveal that the optic nerve stimulations generate balanced excitatory and inhibitory synaptic currents in the Ipc neurons. We have also found that synaptic connection between the Imc to Ipc neuron is inhibitory. The visual response properties of the Ipc neurons to a range of computer-generated stimuli are investigated using extracellular recordings. We have found that the Ipc neurons have a localized excitatory receptive field and show stimulus selectivity and stimulus-size tuning. We also investigate lateral interactions in the Ipc neurons in response to multiple stimuli within the visual field. Finally, we quantify the oscillatory bursts observed in Ipc responses under visual stimulations

    Evaluation of Open-Source EDA Tool “EDA Playground”

    Get PDF
    With the advancement of Information Technology, the design, verification, and manufacturing of Integrated circuits have been challenging and time consuming. Unlike the software domain, Electronic Design Automation (EDA) tools are mostly commercially available, and access is limited to the students. An open-source EDA tool might help the students to initialize the learning process. This thesis showcases an open-source EDA platform, EDA Playground, where users can practice their hardware description language (HDL) codes, create a testbench to simulate their designs and synthesize their code. The thesis shows how EDA Playground provides its users with the ability to write code in various HDLs, enabling them to evaluate their designs using a range of both commercial and freely available simulators. Additionally, it also shows how the platform helps in identifying and resolving design failures through the utilization of waveform viewing tool, EPwave, developed my EDA Playground and logs. It is also highlighted how users have the ability to employ commercial synthesizers in order to combine their codes, thereby facilitating the assessment of device utilization and circuit diagram. Another notable objective of the thesis is to highlight the application of EDA Playground to the incorporate of UVM 1.2. A step-by-step UVM testbench of a simple SystemVerilog adder was developed and simulated as a part of the thesis. Prospective users have the opportunity to gain knowledge about this methodology by accessing educational resources, which encompass various tools and examples provided for their advantage. The thesis provides an extensive array of use cases that showcase the varied functionalities provided by EDA Playground. This thesis extensively employs and evaluates the diverse resources offered on EDA Playground to determine their usefulness

    Non-invasive aerosol delivery and transport of gold nanoparticles to the brain

    Get PDF
    Targeted delivery of nanoscale carriers containing packaged payloads to the central nervous system has potential use in many diagnostic and therapeutic applications. Moreover, understanding of the bio-interactions of the engineered nanoparticles used for tissue-specific delivery by non-invasive delivery approaches are also of paramount interest. Here, we have examined this issue systematically in a relatively simple invertebrate model using insects. We synthesized 5 nm, positively charged gold nanoparticles (AuNPs) and targeted their delivery using the electrospray aerosol generator. Our results revealed that after the exposure of synthesized aerosol to the insect antenna, AuNPs reached the brain within an hour. Nanoparticle accumulation in the brain increased linearly with the exposure time. Notably, electrophysiological recordings from neurons in the insect brain several hours after exposure did not show any significant alterations in their spontaneous and odor-evoked spiking properties. Taken together, our findings reveal that aerosolized delivery of nanoparticles can be an effective non-invasive approach for delivering nanoparticles to the brain, and also presents an approach to monitor the short-term nano-biointeractions

    Geospatial analysis of the effects of tsunami on coral and mangrove ecosystems of Mayabunder in Andaman Islands, India

    Get PDF
    Mangroves and coral reefs are among the major ecosystems of tropical and subtropical coastlines. The Andaman group of islands, situated at the juncture of Bay of Bengal and Indian Ocean, are one of the richest coastal ecosystems of India in terms of biodiversity. Since the tsunami waves of 2004 affected this region severely, the outer fringes as well as inland areas of these islands faced extensive ecological degradation. Mayabunder is one such place of this region, where corals and mangroves had experienced both natural and anthropogenic threat. Considering the notable vulnerability of this coastal environment, the present study aimed to assess the transformations of the coral and mangrove ecosystems at Mayabunder both in pre-tsunami and post-tsunami periods till the present year using multi-temporal satellite imageries and geospatial techniques. Results showed that the areal coverage of healthy living coral reefs was reduced by 466.56 ha (10.42 %) from 1990 to 2000. Afterwards, the coupled ecosystem had experienced serious degradation again during the 2000−2010 phase. The areal coverage of dense mangroves decreased by 47.37%, whereas the area of dead coral covers showed a significant rise of 55.52%. However, partial restoration of both mangroves as well as healthy corals had also been observed here in recent years. It was raised from the extensive field visits and feedbacks from local inhabitants that this restoration initiative could become more effective if a participatory mode of management is adopted

    Metastatic vulvar Crohn′s disease-A rare case report and short review of literature

    No full text
    Metastatic Crohn′s disease (CD), a type of extraintestinal CD may present with gynecological manifestation which causes diagnostic dilemma and needs multidisciplinary approach. Vulvar lesions occur in very small number of cases with CD of which asymmetrical labial swelling and edema is the most common presentation. We report a case of hypertrophic exophytic variety of vulvar CD because of its rarity

    Numerical and Experimental Analysis of the Growth of Gravitational Interfacial Instability Generated by Two Viscous Fluids of Different Densities

    Get PDF
    In the geophysical context, there are a wide variety of mechanisms which may lead to the formation of unstable density stratification, leading in turn to the development of the Rayleigh-Taylor instability and, more generally, interfacial gravity-driven instabilities, which involves moving boundaries and interfaces. The purpose of this work is to study the level set method and to apply the process to study the Rayleigh-Taylor instability experimentally and numerically. With the help of a simple, inexpensive experimental arrangement, the R-T instability has been visualized with moderate accuracy for real fluids. The same physical phenomenon has been investigated numerically to track the interface of two fluids of different densities to observe the gravitational instability with the application of level set method coupled with volume of fraction replacing the Heaviside function. Good agreement between theory and experimental results was found and growth of instability for both of the methods has been plotted
    corecore